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INTRODUCTION 
 

Compilers today have become very good at optimizing code that has not been written in the 
most efficient manner possible.  Many coders often take this for granted and do not spend time 
concerning themselves with the performance of their code and mistakenly rely on compilers to detect 
and correct inefficiencies.  One simple example of why coders should pay attention and not rely on 
compilers to do the thinking for them is when to use prefix or postfix in their code. 

 
Most coders coming out of school today all know the basic difference between these two 

lines of code: 
 
function(++variable); 
function(variable++); 

 
The basic difference is that the first function call will be sent an incremented variable, 

whereas the second one will receive the current value of the variable and then the variable will be 
incremented upon return from the function.  So, many coders will be comfortable with that knowledge 
but not think there is any difference between the next two lines of code: 

 
 variable++; 
 ++variable; 
 

In the end, both of these lines of code will increment the variable, but the concern is how. 
 
 

METHODOLOGY 
 

In order to understand the difference between these two notations, what is produced by the 
complier must be discussed.  Without optimization, the compiler must create a copy in order to 
accomplish a postfix increment or decrement.  The prefix does not require this and is, therefore, 
more efficient.  Most modern compilers can detect and optimize the simple cases like the cases 
involving basic built-in types.  This should not be relied upon and it should be a habit to always use 
prefix unless specifically needed to postfix.  Take for example the following code: 

 
 for(int i = 0; i < SomeNum; i++) { doAnything; } 
 

Most college professors and books will show loops written in this way.  So, coders that have 
seen loops mostly written in this way will continue to write them in the same fashion.  It is not 
necessary to postfix increment for this loop.  Even though most compilers will optimize this properly 
in most cases, this should always be written for loop: 
 
 for(int i = 0; i < SomeNum; ++i) { doAnything; } 
 

So let’s take a look at some assembly.  Modern compilers will produce the following after they 
optimize this code: 
 
//prefix built in type 
; 21   :   for(auto i = 0u; i < 10000; ++i) 
mov DWORD PTR _i$1[ebp], 0 
jmp SHORT $LN3@wmain 
mov eax, DWORD PTR _i$1[ebp] 
add eax, 1 
mov DWORD PTR _i$1[ebp], eax 
cmp DWORD PTR _i$1[ebp], 10000; 00002710H 
jae SHORT $LN1@wmain 
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; 22   :; 
jmp SHORT $LN2@wmain 
 
 
 
//postfix built in type 
; 21   :   for(auto i = 0u; i < 10000; i++) 
mov DWORD PTR _i$1[ebp], 0 
jmp SHORT $LN3@wmain 
mov eax, DWORD PTR _i$1[ebp] 
add eax, 1 
mov DWORD PTR _i$1[ebp], eax 
cmp DWORD PTR _i$1[ebp], 10000; 00002710H 
jae SHORT $LN1@wmain 
; 22   :; 
jmp SHORT $LN2@wmain 

 
As one can see, the optimized code is exactly the same.  The following loops are an example 

of code that is a little trickier for the compiler to optimize: 
 
    auto& it = my_ints.begin(); 
    while(it != my_ints.end()) 
      it++; 
 
    auto& it = my_ints.begin(); 
    while(it != my_ints.end()) 
      ++it; 
 

The variable ‘it’ is a vector iterator.  The prefix and postfix increment line of code produces 
the following assembly code: 
 
//iterator prefix 
00F755E2  mov         ecx, dword ptr[it] 
00F755E5  call        std::_Vector_iterator<std::_Vector_val<std::_Simple_types<unsigned int> > >::operator++ (0F711F9h) 
00F755EA  jmp         wmain + 0EEh (0F7558Eh) 
 
//iterator postfix 
002E5A12  push        0 
002E5A14  lea         eax, [ebp - 17Ch] 
002E5A1A  push        eax 
002E5A1B  mov         ecx, dword ptr[it] 
002E5A1E  call        std::_Vector_iterator<std::_Vector_val<std::_Simple_types<unsigned int> > >::operator++ (02E10FFh) 
002E5A23  lea         ecx, [ebp - 17Ch] 
002E5A29  call        std::_Vector_iterator<std::_Vector_val<std::_Simple_types<unsigned int> > 
>::~_Vector_iterator<std::_Vector_val<std::_Simple_types<unsigned int> > >(02E119Ah) 
002E5A2E  jmp         wmain + 0EEh (02E59BEh) 
 

As one can clearly see, the compiler was unable to optimize the postfix.  It had to create the 
copy. Figure 1 displays how long it takes to run through the previous code for a certain number of 
iterations. 
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Figure 1 
Prefix versus postfix - iterators 

 
 

CONCLUSIONS 
 

The C++ coders need to take the time to understand implications of the code that they create.  
Some of the most benign looking code can have a significant impact on the performance of a piece 
of software that can, in turn, affect the device/system that is running it.  An easily addressable 
example of this is the prefix and postfix notation.  A coder should always use prefix notation unless 
they have to use postfix.
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